330 lines
14 KiB
Python
330 lines
14 KiB
Python
import os
|
|
import shutil
|
|
import importlib.util
|
|
from models.training import Training
|
|
from models.TrainingProject import TrainingProject
|
|
|
|
def load_base_config(selected_model):
|
|
"""Load base configuration for a specific YOLOX model"""
|
|
model_name = selected_model.lower().replace('-', '_').replace('.pth', '')
|
|
base_config_path = os.path.join(os.path.dirname(__file__), '..', 'data', f'{model_name}.py')
|
|
|
|
if not os.path.exists(base_config_path):
|
|
raise Exception(f'Base configuration not found for model: {model_name} at {base_config_path}')
|
|
|
|
# Load the module dynamically
|
|
spec = importlib.util.spec_from_file_location(f"base_config_{model_name}", base_config_path)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
|
|
# Extract all attributes from BaseExp class
|
|
base_exp = module.BaseExp()
|
|
base_config = {}
|
|
for attr in dir(base_exp):
|
|
if not attr.startswith('_'):
|
|
base_config[attr] = getattr(base_exp, attr)
|
|
|
|
return base_config
|
|
|
|
def generate_yolox_exp(training_id):
|
|
"""Generate YOLOX exp.py file"""
|
|
# Fetch training row from DB
|
|
training = Training.query.get(training_id)
|
|
if not training:
|
|
training = Training.query.filter_by(project_details_id=training_id).first()
|
|
|
|
if not training:
|
|
raise Exception(f'Training not found for trainingId or project_details_id: {training_id}')
|
|
|
|
# If transfer_learning is 'coco', generate exp using base config + custom settings
|
|
if training.transfer_learning == 'coco':
|
|
exp_content = generate_yolox_inference_exp(training_id, use_base_config=True)
|
|
return {'type': 'custom', 'expContent': exp_content}
|
|
|
|
# If transfer_learning is 'sketch', generate custom exp.py
|
|
if training.transfer_learning == 'sketch':
|
|
exp_content = generate_yolox_inference_exp(training_id, use_base_config=False)
|
|
return {'type': 'custom', 'expContent': exp_content}
|
|
|
|
raise Exception(f'Unknown transfer_learning type: {training.transfer_learning}')
|
|
|
|
def save_yolox_exp(training_id, out_path):
|
|
"""Save YOLOX exp.py to specified path"""
|
|
exp_result = generate_yolox_exp(training_id)
|
|
|
|
if exp_result['type'] == 'custom' and 'expContent' in exp_result:
|
|
with open(out_path, 'w') as f:
|
|
f.write(exp_result['expContent'])
|
|
return out_path
|
|
elif exp_result['type'] == 'default' and 'expPath' in exp_result:
|
|
# Optionally copy the file if outPath is different
|
|
if exp_result['expPath'] != out_path:
|
|
shutil.copyfile(exp_result['expPath'], out_path)
|
|
return out_path
|
|
else:
|
|
raise Exception('Unknown expResult type or missing content')
|
|
|
|
def generate_yolox_inference_exp(training_id, options=None, use_base_config=False):
|
|
"""Generate inference exp.py using DB values
|
|
|
|
Args:
|
|
training_id: The training/project_details ID
|
|
options: Optional overrides for data paths
|
|
use_base_config: If True, load base config and only override with user-defined values
|
|
"""
|
|
if options is None:
|
|
options = {}
|
|
|
|
training = Training.query.get(training_id)
|
|
if not training:
|
|
training = Training.query.filter_by(project_details_id=training_id).first()
|
|
|
|
if not training:
|
|
raise Exception(f'Training not found for trainingId or project_details_id: {training_id}')
|
|
|
|
# Always use the project_details_id for annotation file names and paths
|
|
project_details_id = training.project_details_id
|
|
|
|
# Get annotation file names from options or use defaults
|
|
# Use training.id (not project_details_id) for consistency with generate_training_json
|
|
train_ann = options.get('train_ann', f'coco_project_{training_id}_train.json')
|
|
val_ann = options.get('val_ann', f'coco_project_{training_id}_valid.json')
|
|
test_ann = options.get('test_ann', f'coco_project_{training_id}_test.json')
|
|
|
|
# Get data_dir - this should point to where IMAGES are located (not annotations)
|
|
# YOLOX will combine data_dir + file_name from COCO JSON to find images
|
|
# The annotations are in a separate location (output folder)
|
|
from services.settings_service import get_setting
|
|
from models.TrainingProjectDetails import TrainingProjectDetails
|
|
|
|
if 'data_dir' in options:
|
|
data_dir = options['data_dir']
|
|
else:
|
|
# Use the yolox_data_dir setting - this is where training images are stored
|
|
data_dir = get_setting('yolox_data_dir', '/home/kitraining/To_Annotate/')
|
|
# Ensure it ends with a separator
|
|
if not data_dir.endswith(os.sep) and not data_dir.endswith('/'):
|
|
data_dir += os.sep
|
|
|
|
# Get num_classes from ProjectClass table (3NF)
|
|
num_classes = 80
|
|
try:
|
|
from models.ProjectClass import ProjectClass
|
|
training_project = TrainingProject.query.get(project_details_id)
|
|
if training_project:
|
|
# Count classes from ProjectClass table
|
|
class_count = ProjectClass.query.filter_by(project_id=training_project.project_id).count()
|
|
if class_count > 0:
|
|
num_classes = class_count
|
|
except Exception as e:
|
|
print(f'Could not determine num_classes from ProjectClass: {e}')
|
|
|
|
# Initialize config dictionary
|
|
config = {}
|
|
|
|
# If using base config (transfer learning from COCO), load protected parameters first
|
|
if use_base_config and training.selected_model:
|
|
try:
|
|
base_config = load_base_config(training.selected_model)
|
|
config.update(base_config)
|
|
print(f'Loaded base config for {training.selected_model}: {list(base_config.keys())}')
|
|
except Exception as e:
|
|
print(f'Warning: Could not load base config for {training.selected_model}: {e}')
|
|
print('Falling back to custom settings only')
|
|
|
|
# Get size arrays from TrainingSize table (3NF)
|
|
from models.TrainingSize import TrainingSize
|
|
|
|
def get_size_array(training_id, size_type):
|
|
"""Helper to get size array from TrainingSize table"""
|
|
sizes = TrainingSize.query.filter_by(
|
|
training_id=training_id,
|
|
size_type=size_type
|
|
).order_by(TrainingSize.value_order).all()
|
|
return [s.value for s in sizes] if sizes else None
|
|
|
|
input_size = get_size_array(training.id, 'input_size')
|
|
test_size = get_size_array(training.id, 'test_size')
|
|
mosaic_scale = get_size_array(training.id, 'mosaic_scale')
|
|
mixup_scale = get_size_array(training.id, 'mixup_scale')
|
|
|
|
# Override with user-defined values from training table (only if they exist and are not None)
|
|
user_overrides = {
|
|
'depth': training.depth,
|
|
'width': training.width,
|
|
'input_size': input_size,
|
|
'mosaic_scale': mosaic_scale,
|
|
'test_size': test_size,
|
|
'enable_mixup': training.enable_mixup,
|
|
'max_epoch': training.max_epoch,
|
|
'warmup_epochs': training.warmup_epochs,
|
|
'warmup_lr': training.warmup_lr,
|
|
'basic_lr_per_img': training.basic_lr_per_img,
|
|
'scheduler': training.scheduler,
|
|
'no_aug_epochs': training.no_aug_epochs,
|
|
'min_lr_ratio': training.min_lr_ratio,
|
|
'ema': training.ema,
|
|
'weight_decay': training.weight_decay,
|
|
'momentum': training.momentum,
|
|
'print_interval': training.print_interval,
|
|
'eval_interval': training.eval_interval,
|
|
'test_conf': training.test_conf,
|
|
'nms_thre': training.nms_thre,
|
|
'mosaic_prob': training.mosaic_prob,
|
|
'mixup_prob': training.mixup_prob,
|
|
'hsv_prob': training.hsv_prob,
|
|
'flip_prob': training.flip_prob,
|
|
# Convert single values to tuples for YOLOX augmentation parameters
|
|
'degrees': (training.degrees, training.degrees) if training.degrees is not None and not isinstance(training.degrees, (list, tuple)) else training.degrees,
|
|
'translate': (training.translate, training.translate) if training.translate is not None and not isinstance(training.translate, (list, tuple)) else training.translate,
|
|
'shear': (training.shear, training.shear) if training.shear is not None and not isinstance(training.shear, (list, tuple)) else training.shear,
|
|
'mixup_scale': mixup_scale,
|
|
'activation': training.activation,
|
|
}
|
|
|
|
# Only override if value is explicitly set (not None)
|
|
for key, value in user_overrides.items():
|
|
if value is not None:
|
|
config[key] = value
|
|
|
|
# Apply any additional options overrides
|
|
config.update(options)
|
|
|
|
# Set defaults for any missing required parameters
|
|
config.setdefault('depth', 1.00)
|
|
config.setdefault('width', 1.00)
|
|
config.setdefault('input_size', [640, 640])
|
|
config.setdefault('mosaic_scale', [0.1, 2])
|
|
config.setdefault('random_size', [10, 20])
|
|
config.setdefault('test_size', [640, 640])
|
|
config.setdefault('enable_mixup', False)
|
|
config.setdefault('exp_name', 'inference_exp')
|
|
|
|
# Prepare data_dir for template - escape backslashes and remove trailing separator
|
|
data_dir_clean = data_dir.rstrip('/\\')
|
|
data_dir_escaped = data_dir_clean.replace('\\', '\\\\')
|
|
|
|
# Calculate annotations directory (where JSON files are stored)
|
|
# This is in the output folder, not with the images
|
|
from models.TrainingProjectDetails import TrainingProjectDetails
|
|
details = TrainingProjectDetails.query.get(project_details_id)
|
|
if details:
|
|
training_project = TrainingProject.query.get(details.project_id)
|
|
project_name = training_project.title.replace(' ', '_') if training_project and training_project.title else f'project_{details.project_id}'
|
|
else:
|
|
project_name = f'project_{project_details_id}'
|
|
|
|
training_folder_name = f"{training.exp_name or training.training_name or 'training'}_{training_id}"
|
|
training_folder_name = training_folder_name.replace(' ', '_')
|
|
|
|
output_base_path = get_setting('yolox_output_path', './backend')
|
|
annotations_parent_dir = os.path.join(output_base_path, project_name, training_folder_name)
|
|
annotations_parent_escaped = annotations_parent_dir.replace('\\', '\\\\')
|
|
|
|
# Build exp content
|
|
exp_content = f'''#!/usr/bin/env python3
|
|
# -*- coding:utf-8 -*-
|
|
# Copyright (c) Megvii, Inc. and its affiliates.
|
|
|
|
import os
|
|
|
|
from yolox.exp import Exp as MyExp
|
|
|
|
|
|
class Exp(MyExp):
|
|
def __init__(self):
|
|
super(Exp, self).__init__()
|
|
self.data_dir = "{data_dir_escaped}" # Where images are located
|
|
self.annotations_dir = "{annotations_parent_escaped}" # Where annotation JSONs are located
|
|
self.train_ann = "{train_ann}"
|
|
self.val_ann = "{val_ann}"
|
|
self.test_ann = "{test_ann}"
|
|
self.num_classes = {num_classes}
|
|
# Disable train2017 subdirectory - our images are directly in data_dir
|
|
self.name = ""
|
|
# Set data workers for training
|
|
self.data_num_workers = 8
|
|
'''
|
|
|
|
# Set pretrained_ckpt if transfer_learning is 'coco'
|
|
if training.transfer_learning and isinstance(training.transfer_learning, str) and training.transfer_learning.lower() == 'coco':
|
|
yolox_base_dir = '/home/kitraining/Yolox/YOLOX-main'
|
|
selected_model = training.selected_model.replace('.pth', '') if training.selected_model else ''
|
|
if selected_model:
|
|
exp_content += f" self.pretrained_ckpt = r'{yolox_base_dir}/pretrained/{selected_model}.pth'\n"
|
|
|
|
# Format arrays
|
|
def format_value(val):
|
|
if isinstance(val, (list, tuple)):
|
|
# Convert float values to int for size-related parameters
|
|
formatted_items = []
|
|
for item in val:
|
|
# Convert to int if it's a whole number float
|
|
if isinstance(item, float) and item.is_integer():
|
|
formatted_items.append(str(int(item)))
|
|
else:
|
|
formatted_items.append(str(item))
|
|
return '(' + ', '.join(formatted_items) + ')'
|
|
elif isinstance(val, bool):
|
|
return str(val)
|
|
elif isinstance(val, str):
|
|
return f'"{val}"'
|
|
elif isinstance(val, float) and val.is_integer():
|
|
# Convert whole number floats to ints
|
|
return str(int(val))
|
|
else:
|
|
return str(val)
|
|
|
|
# Add all config parameters to exp
|
|
for key, value in config.items():
|
|
if key not in ['exp_name']: # exp_name is handled separately
|
|
exp_content += f" self.{key} = {format_value(value)}\n"
|
|
|
|
# Add get_dataset override using name parameter for image directory
|
|
exp_content += '''
|
|
def get_dataset(self, cache=False, cache_type="ram"):
|
|
"""Override to use name parameter for images directory"""
|
|
from yolox.data import COCODataset
|
|
|
|
# COCODataset constructs image paths as: os.path.join(data_dir, name, file_name)
|
|
# YOLOX adds "annotations/" to data_dir automatically, so we pass annotations_dir directly
|
|
# Use empty string for name since we have absolute paths in JSON
|
|
return COCODataset(
|
|
data_dir=self.annotations_dir,
|
|
json_file=self.train_ann,
|
|
name="",
|
|
img_size=self.input_size,
|
|
preproc=self.preproc if hasattr(self, 'preproc') else None,
|
|
cache=cache,
|
|
cache_type=cache_type,
|
|
)
|
|
|
|
def get_eval_dataset(self, **kwargs):
|
|
"""Override eval dataset using name parameter"""
|
|
from yolox.data import COCODataset
|
|
|
|
testdev = kwargs.get("testdev", False)
|
|
legacy = kwargs.get("legacy", False)
|
|
|
|
return COCODataset(
|
|
data_dir=self.annotations_dir,
|
|
json_file=self.val_ann if not testdev else self.test_ann,
|
|
name="",
|
|
img_size=self.test_size,
|
|
preproc=None, # No preprocessing for evaluation
|
|
)
|
|
'''
|
|
|
|
# Add exp_name at the end (uses dynamic path)
|
|
exp_content += f''' self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
|
'''
|
|
|
|
return exp_content
|
|
|
|
def save_yolox_inference_exp(training_id, out_path, options=None):
|
|
"""Save inference exp.py to custom path"""
|
|
exp_content = generate_yolox_inference_exp(training_id, options, use_base_config=False)
|
|
with open(out_path, 'w') as f:
|
|
f.write(exp_content)
|
|
return out_path
|