Files
Abschluss-Projekt/backend/services/generate_yolox_exp.py
2025-11-28 16:09:14 +01:00

229 lines
9.1 KiB
Python

import os
import shutil
import importlib.util
from models.training import Training
from models.TrainingProject import TrainingProject
def load_base_config(selected_model):
"""Load base configuration for a specific YOLOX model"""
model_name = selected_model.lower().replace('-', '_').replace('.pth', '')
base_config_path = os.path.join(os.path.dirname(__file__), '..', 'data', f'{model_name}.py')
if not os.path.exists(base_config_path):
raise Exception(f'Base configuration not found for model: {model_name} at {base_config_path}')
# Load the module dynamically
spec = importlib.util.spec_from_file_location(f"base_config_{model_name}", base_config_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Extract all attributes from BaseExp class
base_exp = module.BaseExp()
base_config = {}
for attr in dir(base_exp):
if not attr.startswith('_'):
base_config[attr] = getattr(base_exp, attr)
return base_config
def generate_yolox_exp(training_id):
"""Generate YOLOX exp.py file"""
# Fetch training row from DB
training = Training.query.get(training_id)
if not training:
training = Training.query.filter_by(project_details_id=training_id).first()
if not training:
raise Exception(f'Training not found for trainingId or project_details_id: {training_id}')
# If transfer_learning is 'coco', generate exp using base config + custom settings
if training.transfer_learning == 'coco':
exp_content = generate_yolox_inference_exp(training_id, use_base_config=True)
return {'type': 'custom', 'expContent': exp_content}
# If transfer_learning is 'sketch', generate custom exp.py
if training.transfer_learning == 'sketch':
exp_content = generate_yolox_inference_exp(training_id, use_base_config=False)
return {'type': 'custom', 'expContent': exp_content}
raise Exception(f'Unknown transfer_learning type: {training.transfer_learning}')
def save_yolox_exp(training_id, out_path):
"""Save YOLOX exp.py to specified path"""
exp_result = generate_yolox_exp(training_id)
if exp_result['type'] == 'custom' and 'expContent' in exp_result:
with open(out_path, 'w') as f:
f.write(exp_result['expContent'])
return out_path
elif exp_result['type'] == 'default' and 'expPath' in exp_result:
# Optionally copy the file if outPath is different
if exp_result['expPath'] != out_path:
shutil.copyfile(exp_result['expPath'], out_path)
return out_path
else:
raise Exception('Unknown expResult type or missing content')
def generate_yolox_inference_exp(training_id, options=None, use_base_config=False):
"""Generate inference exp.py using DB values
Args:
training_id: The training/project_details ID
options: Optional overrides for data paths
use_base_config: If True, load base config and only override with user-defined values
"""
if options is None:
options = {}
training = Training.query.get(training_id)
if not training:
training = Training.query.filter_by(project_details_id=training_id).first()
if not training:
raise Exception(f'Training not found for trainingId or project_details_id: {training_id}')
# Always use the training_id (project_details_id) for annotation file names
project_details_id = training.project_details_id
data_dir = options.get('data_dir', '/home/kitraining/To_Annotate/')
train_ann = options.get('train_ann', f'coco_project_{training_id}_train.json')
val_ann = options.get('val_ann', f'coco_project_{training_id}_valid.json')
test_ann = options.get('test_ann', f'coco_project_{training_id}_test.json')
# Get num_classes from TrainingProject.classes JSON
num_classes = 80
try:
training_project = TrainingProject.query.get(project_details_id)
if training_project and training_project.classes:
classes_arr = training_project.classes
if isinstance(classes_arr, str):
import json
classes_arr = json.loads(classes_arr)
if isinstance(classes_arr, list):
num_classes = len([c for c in classes_arr if c not in [None, '']])
elif isinstance(classes_arr, dict):
num_classes = len([k for k, v in classes_arr.items() if v not in [None, '']])
except Exception as e:
print(f'Could not determine num_classes from TrainingProject.classes: {e}')
# Initialize config dictionary
config = {}
# If using base config (transfer learning from COCO), load protected parameters first
if use_base_config and training.selected_model:
try:
base_config = load_base_config(training.selected_model)
config.update(base_config)
print(f'Loaded base config for {training.selected_model}: {list(base_config.keys())}')
except Exception as e:
print(f'Warning: Could not load base config for {training.selected_model}: {e}')
print('Falling back to custom settings only')
# Override with user-defined values from training table (only if they exist and are not None)
user_overrides = {
'depth': training.depth,
'width': training.width,
'input_size': training.input_size,
'mosaic_scale': training.mosaic_scale,
'test_size': training.test_size,
'enable_mixup': training.enable_mixup,
'max_epoch': training.max_epoch,
'warmup_epochs': training.warmup_epochs,
'warmup_lr': training.warmup_lr,
'basic_lr_per_img': training.basic_lr_per_img,
'scheduler': training.scheduler,
'no_aug_epochs': training.no_aug_epochs,
'min_lr_ratio': training.min_lr_ratio,
'ema': training.ema,
'weight_decay': training.weight_decay,
'momentum': training.momentum,
'print_interval': training.print_interval,
'eval_interval': training.eval_interval,
'test_conf': training.test_conf,
'nms_thre': training.nms_thre,
'mosaic_prob': training.mosaic_prob,
'mixup_prob': training.mixup_prob,
'hsv_prob': training.hsv_prob,
'flip_prob': training.flip_prob,
'degrees': training.degrees,
'translate': training.translate,
'shear': training.shear,
'mixup_scale': training.mixup_scale,
'activation': training.activation,
}
# Only override if value is explicitly set (not None)
for key, value in user_overrides.items():
if value is not None:
config[key] = value
# Apply any additional options overrides
config.update(options)
# Set defaults for any missing required parameters
config.setdefault('depth', 1.00)
config.setdefault('width', 1.00)
config.setdefault('input_size', [640, 640])
config.setdefault('mosaic_scale', [0.1, 2])
config.setdefault('random_size', [10, 20])
config.setdefault('test_size', [640, 640])
config.setdefault('enable_mixup', False)
config.setdefault('exp_name', 'inference_exp')
# Build exp content
exp_content = f'''#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import os
from yolox.exp import Exp as MyExp
class Exp(MyExp):
def __init__(self):
super(Exp, self).__init__()
self.data_dir = "{data_dir}"
self.train_ann = "{train_ann}"
self.val_ann = "{val_ann}"
self.test_ann = "{test_ann}"
self.num_classes = {num_classes}
'''
# Set pretrained_ckpt if transfer_learning is 'coco'
if training.transfer_learning and isinstance(training.transfer_learning, str) and training.transfer_learning.lower() == 'coco':
yolox_base_dir = '/home/kitraining/Yolox/YOLOX-main'
selected_model = training.selected_model.replace('.pth', '') if training.selected_model else ''
if selected_model:
exp_content += f" self.pretrained_ckpt = r'{yolox_base_dir}/pretrained/{selected_model}.pth'\n"
# Format arrays
def format_value(val):
if isinstance(val, (list, tuple)):
return '(' + ', '.join(map(str, val)) + ')'
elif isinstance(val, bool):
return str(val)
elif isinstance(val, str):
return f'"{val}"'
else:
return str(val)
# Add all config parameters to exp
for key, value in config.items():
if key not in ['exp_name']: # exp_name is handled separately
exp_content += f" self.{key} = {format_value(value)}\n"
# Add exp_name at the end (uses dynamic path)
exp_content += f''' self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
'''
return exp_content
def save_yolox_inference_exp(training_id, out_path, options=None):
"""Save inference exp.py to custom path"""
exp_content = generate_yolox_inference_exp(training_id, options, use_base_config=False)
with open(out_path, 'w') as f:
f.write(exp_content)
return out_path