229 lines
9.1 KiB
Python
229 lines
9.1 KiB
Python
import os
|
|
import shutil
|
|
import importlib.util
|
|
from models.training import Training
|
|
from models.TrainingProject import TrainingProject
|
|
|
|
def load_base_config(selected_model):
|
|
"""Load base configuration for a specific YOLOX model"""
|
|
model_name = selected_model.lower().replace('-', '_').replace('.pth', '')
|
|
base_config_path = os.path.join(os.path.dirname(__file__), '..', 'data', f'{model_name}.py')
|
|
|
|
if not os.path.exists(base_config_path):
|
|
raise Exception(f'Base configuration not found for model: {model_name} at {base_config_path}')
|
|
|
|
# Load the module dynamically
|
|
spec = importlib.util.spec_from_file_location(f"base_config_{model_name}", base_config_path)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
|
|
# Extract all attributes from BaseExp class
|
|
base_exp = module.BaseExp()
|
|
base_config = {}
|
|
for attr in dir(base_exp):
|
|
if not attr.startswith('_'):
|
|
base_config[attr] = getattr(base_exp, attr)
|
|
|
|
return base_config
|
|
|
|
def generate_yolox_exp(training_id):
|
|
"""Generate YOLOX exp.py file"""
|
|
# Fetch training row from DB
|
|
training = Training.query.get(training_id)
|
|
if not training:
|
|
training = Training.query.filter_by(project_details_id=training_id).first()
|
|
|
|
if not training:
|
|
raise Exception(f'Training not found for trainingId or project_details_id: {training_id}')
|
|
|
|
# If transfer_learning is 'coco', generate exp using base config + custom settings
|
|
if training.transfer_learning == 'coco':
|
|
exp_content = generate_yolox_inference_exp(training_id, use_base_config=True)
|
|
return {'type': 'custom', 'expContent': exp_content}
|
|
|
|
# If transfer_learning is 'sketch', generate custom exp.py
|
|
if training.transfer_learning == 'sketch':
|
|
exp_content = generate_yolox_inference_exp(training_id, use_base_config=False)
|
|
return {'type': 'custom', 'expContent': exp_content}
|
|
|
|
raise Exception(f'Unknown transfer_learning type: {training.transfer_learning}')
|
|
|
|
def save_yolox_exp(training_id, out_path):
|
|
"""Save YOLOX exp.py to specified path"""
|
|
exp_result = generate_yolox_exp(training_id)
|
|
|
|
if exp_result['type'] == 'custom' and 'expContent' in exp_result:
|
|
with open(out_path, 'w') as f:
|
|
f.write(exp_result['expContent'])
|
|
return out_path
|
|
elif exp_result['type'] == 'default' and 'expPath' in exp_result:
|
|
# Optionally copy the file if outPath is different
|
|
if exp_result['expPath'] != out_path:
|
|
shutil.copyfile(exp_result['expPath'], out_path)
|
|
return out_path
|
|
else:
|
|
raise Exception('Unknown expResult type or missing content')
|
|
|
|
def generate_yolox_inference_exp(training_id, options=None, use_base_config=False):
|
|
"""Generate inference exp.py using DB values
|
|
|
|
Args:
|
|
training_id: The training/project_details ID
|
|
options: Optional overrides for data paths
|
|
use_base_config: If True, load base config and only override with user-defined values
|
|
"""
|
|
if options is None:
|
|
options = {}
|
|
|
|
training = Training.query.get(training_id)
|
|
if not training:
|
|
training = Training.query.filter_by(project_details_id=training_id).first()
|
|
|
|
if not training:
|
|
raise Exception(f'Training not found for trainingId or project_details_id: {training_id}')
|
|
|
|
# Always use the training_id (project_details_id) for annotation file names
|
|
project_details_id = training.project_details_id
|
|
|
|
data_dir = options.get('data_dir', '/home/kitraining/To_Annotate/')
|
|
train_ann = options.get('train_ann', f'coco_project_{training_id}_train.json')
|
|
val_ann = options.get('val_ann', f'coco_project_{training_id}_valid.json')
|
|
test_ann = options.get('test_ann', f'coco_project_{training_id}_test.json')
|
|
|
|
# Get num_classes from TrainingProject.classes JSON
|
|
num_classes = 80
|
|
try:
|
|
training_project = TrainingProject.query.get(project_details_id)
|
|
if training_project and training_project.classes:
|
|
classes_arr = training_project.classes
|
|
if isinstance(classes_arr, str):
|
|
import json
|
|
classes_arr = json.loads(classes_arr)
|
|
|
|
if isinstance(classes_arr, list):
|
|
num_classes = len([c for c in classes_arr if c not in [None, '']])
|
|
elif isinstance(classes_arr, dict):
|
|
num_classes = len([k for k, v in classes_arr.items() if v not in [None, '']])
|
|
except Exception as e:
|
|
print(f'Could not determine num_classes from TrainingProject.classes: {e}')
|
|
|
|
# Initialize config dictionary
|
|
config = {}
|
|
|
|
# If using base config (transfer learning from COCO), load protected parameters first
|
|
if use_base_config and training.selected_model:
|
|
try:
|
|
base_config = load_base_config(training.selected_model)
|
|
config.update(base_config)
|
|
print(f'Loaded base config for {training.selected_model}: {list(base_config.keys())}')
|
|
except Exception as e:
|
|
print(f'Warning: Could not load base config for {training.selected_model}: {e}')
|
|
print('Falling back to custom settings only')
|
|
|
|
# Override with user-defined values from training table (only if they exist and are not None)
|
|
user_overrides = {
|
|
'depth': training.depth,
|
|
'width': training.width,
|
|
'input_size': training.input_size,
|
|
'mosaic_scale': training.mosaic_scale,
|
|
'test_size': training.test_size,
|
|
'enable_mixup': training.enable_mixup,
|
|
'max_epoch': training.max_epoch,
|
|
'warmup_epochs': training.warmup_epochs,
|
|
'warmup_lr': training.warmup_lr,
|
|
'basic_lr_per_img': training.basic_lr_per_img,
|
|
'scheduler': training.scheduler,
|
|
'no_aug_epochs': training.no_aug_epochs,
|
|
'min_lr_ratio': training.min_lr_ratio,
|
|
'ema': training.ema,
|
|
'weight_decay': training.weight_decay,
|
|
'momentum': training.momentum,
|
|
'print_interval': training.print_interval,
|
|
'eval_interval': training.eval_interval,
|
|
'test_conf': training.test_conf,
|
|
'nms_thre': training.nms_thre,
|
|
'mosaic_prob': training.mosaic_prob,
|
|
'mixup_prob': training.mixup_prob,
|
|
'hsv_prob': training.hsv_prob,
|
|
'flip_prob': training.flip_prob,
|
|
'degrees': training.degrees,
|
|
'translate': training.translate,
|
|
'shear': training.shear,
|
|
'mixup_scale': training.mixup_scale,
|
|
'activation': training.activation,
|
|
}
|
|
|
|
# Only override if value is explicitly set (not None)
|
|
for key, value in user_overrides.items():
|
|
if value is not None:
|
|
config[key] = value
|
|
|
|
# Apply any additional options overrides
|
|
config.update(options)
|
|
|
|
# Set defaults for any missing required parameters
|
|
config.setdefault('depth', 1.00)
|
|
config.setdefault('width', 1.00)
|
|
config.setdefault('input_size', [640, 640])
|
|
config.setdefault('mosaic_scale', [0.1, 2])
|
|
config.setdefault('random_size', [10, 20])
|
|
config.setdefault('test_size', [640, 640])
|
|
config.setdefault('enable_mixup', False)
|
|
config.setdefault('exp_name', 'inference_exp')
|
|
|
|
# Build exp content
|
|
exp_content = f'''#!/usr/bin/env python3
|
|
# -*- coding:utf-8 -*-
|
|
# Copyright (c) Megvii, Inc. and its affiliates.
|
|
|
|
import os
|
|
|
|
from yolox.exp import Exp as MyExp
|
|
|
|
|
|
class Exp(MyExp):
|
|
def __init__(self):
|
|
super(Exp, self).__init__()
|
|
self.data_dir = "{data_dir}"
|
|
self.train_ann = "{train_ann}"
|
|
self.val_ann = "{val_ann}"
|
|
self.test_ann = "{test_ann}"
|
|
self.num_classes = {num_classes}
|
|
'''
|
|
|
|
# Set pretrained_ckpt if transfer_learning is 'coco'
|
|
if training.transfer_learning and isinstance(training.transfer_learning, str) and training.transfer_learning.lower() == 'coco':
|
|
yolox_base_dir = '/home/kitraining/Yolox/YOLOX-main'
|
|
selected_model = training.selected_model.replace('.pth', '') if training.selected_model else ''
|
|
if selected_model:
|
|
exp_content += f" self.pretrained_ckpt = r'{yolox_base_dir}/pretrained/{selected_model}.pth'\n"
|
|
|
|
# Format arrays
|
|
def format_value(val):
|
|
if isinstance(val, (list, tuple)):
|
|
return '(' + ', '.join(map(str, val)) + ')'
|
|
elif isinstance(val, bool):
|
|
return str(val)
|
|
elif isinstance(val, str):
|
|
return f'"{val}"'
|
|
else:
|
|
return str(val)
|
|
|
|
# Add all config parameters to exp
|
|
for key, value in config.items():
|
|
if key not in ['exp_name']: # exp_name is handled separately
|
|
exp_content += f" self.{key} = {format_value(value)}\n"
|
|
|
|
# Add exp_name at the end (uses dynamic path)
|
|
exp_content += f''' self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
|
'''
|
|
|
|
return exp_content
|
|
|
|
def save_yolox_inference_exp(training_id, out_path, options=None):
|
|
"""Save inference exp.py to custom path"""
|
|
exp_content = generate_yolox_inference_exp(training_id, options, use_base_config=False)
|
|
with open(out_path, 'w') as f:
|
|
f.write(exp_content)
|
|
return out_path
|