293 lines
11 KiB
Python
293 lines
11 KiB
Python
import os
|
|
import random
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
|
|
# Dynamically import BaseExp from fixed path
|
|
import importlib.util
|
|
import sys
|
|
base_exp_path = '/home/kitraining/Yolox/YOLOX-main/yolox/exp/base_exp.py'
|
|
spec = importlib.util.spec_from_file_location('base_exp', base_exp_path)
|
|
base_exp = importlib.util.module_from_spec(spec)
|
|
sys.modules['base_exp'] = base_exp
|
|
spec.loader.exec_module(base_exp)
|
|
BaseExp = base_exp.BaseExp
|
|
|
|
__all__ = ["Exp", "check_exp_value"]
|
|
|
|
class Exp(BaseExp):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.seed = None
|
|
self.data_dir = r'/home/kitraining/To_Annotate/'
|
|
self.train_ann = 'coco_project_37_train.json'
|
|
self.val_ann = 'coco_project_37_valid.json'
|
|
self.test_ann = 'coco_project_37_test.json'
|
|
self.num_classes = 80
|
|
self.pretrained_ckpt = r'/home/kitraining/Yolox/YOLOX-main/pretrained/YOLOX-l.pth'
|
|
self.depth = 1.00
|
|
self.width = 1.00
|
|
self.act = 'silu'
|
|
self.data_num_workers = 4
|
|
self.input_size = (640, 640)
|
|
self.multiscale_range = 5
|
|
self.mosaic_prob = 1.0
|
|
self.mixup_prob = 1.0
|
|
self.hsv_prob = 1.0
|
|
self.flip_prob = 0.5
|
|
self.degrees = (10.0, 10.0)
|
|
self.translate = (0.1, 0.1)
|
|
self.mosaic_scale = (0.1, 2)
|
|
self.enable_mixup = True
|
|
self.mixup_scale = (0.5, 1.5)
|
|
self.shear = (2.0, 2.0)
|
|
self.warmup_epochs = 5
|
|
self.max_epoch = 300
|
|
self.warmup_lr = 0
|
|
self.min_lr_ratio = 0.05
|
|
self.basic_lr_per_img = 0.01 / 64.0
|
|
self.scheduler = 'yoloxwarmcos'
|
|
self.no_aug_epochs = 15
|
|
self.ema = True
|
|
self.weight_decay = 5e-4
|
|
self.momentum = 0.9
|
|
self.print_interval = 10
|
|
self.eval_interval = 10
|
|
self.save_history_ckpt = True
|
|
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split('.')[0]
|
|
self.test_size = (640, 640)
|
|
self.test_conf = 0.01
|
|
self.nmsthre = 0.65
|
|
self.exp_name = 'custom_exp123'
|
|
self.max_epoch = 300
|
|
self.depth = 1
|
|
self.width = 1
|
|
self.activation = 'silu'
|
|
self.warmup_epochs = 5
|
|
self.warmup_lr = 0
|
|
self.scheduler = 'yoloxwarmcos'
|
|
self.no_aug_epochs = 15
|
|
self.min_lr_ratio = 0.05
|
|
self.ema = True
|
|
self.weight_decay = 0.0005
|
|
self.momentum = 0.9
|
|
self.input_size = (640, 640)
|
|
self.print_interval = 10
|
|
self.eval_interval = 10
|
|
self.save_history_ckpt = True
|
|
self.test_size = (640, 640)
|
|
self.test_conf = 0.01
|
|
self.multiscale_range = 5
|
|
self.enable_mixup = True
|
|
self.mosaic_prob = 1
|
|
self.mixup_prob = 1
|
|
self.hsv_prob = 1
|
|
self.flip_prob = 0.5
|
|
self.degrees = (10, 10)
|
|
self.mosaic_scale = (0.1, 2)
|
|
self.mixup_scale = (0.5, 1.5)
|
|
self.translate = (0.1, 0.1)
|
|
self.shear = (2, 2)
|
|
self.project_details_id = 37
|
|
self.selected_model = 'YOLOX-l'
|
|
self.transfer_learning = 'coco'
|
|
|
|
def get_model(self):
|
|
from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead
|
|
def init_yolo(M):
|
|
for m in M.modules():
|
|
if isinstance(m, nn.BatchNorm2d):
|
|
m.eps = 1e-3
|
|
m.momentum = 0.03
|
|
if getattr(self, 'model', None) is None:
|
|
in_channels = [256, 512, 1024]
|
|
backbone = YOLOPAFPN(self.depth, self.width, in_channels=in_channels, act=self.act)
|
|
head = YOLOXHead(self.num_classes, self.width, in_channels=in_channels, act=self.act)
|
|
self.model = YOLOX(backbone, head)
|
|
self.model.apply(init_yolo)
|
|
self.model.head.initialize_biases(1e-2)
|
|
self.model.train()
|
|
return self.model
|
|
|
|
def get_dataset(self, cache=False, cache_type='ram'):
|
|
from yolox.data import COCODataset, TrainTransform
|
|
return COCODataset(
|
|
data_dir=self.data_dir,
|
|
json_file=self.train_ann,
|
|
img_size=self.input_size,
|
|
preproc=TrainTransform(
|
|
max_labels=50,
|
|
flip_prob=self.flip_prob,
|
|
hsv_prob=self.hsv_prob
|
|
),
|
|
cache=cache,
|
|
cache_type=cache_type,
|
|
)
|
|
|
|
def get_data_loader(self, batch_size, is_distributed, no_aug=False, cache_img=None):
|
|
from yolox.data import (
|
|
TrainTransform,
|
|
YoloBatchSampler,
|
|
DataLoader,
|
|
InfiniteSampler,
|
|
MosaicDetection,
|
|
worker_init_reset_seed,
|
|
)
|
|
from yolox.utils import wait_for_the_master
|
|
if self.dataset is None:
|
|
with wait_for_the_master():
|
|
assert cache_img is None, 'cache_img must be None if you did not create self.dataset before launch'
|
|
self.dataset = self.get_dataset(cache=False, cache_type=cache_img)
|
|
self.dataset = MosaicDetection(
|
|
dataset=self.dataset,
|
|
mosaic=not no_aug,
|
|
img_size=self.input_size,
|
|
preproc=TrainTransform(
|
|
max_labels=120,
|
|
flip_prob=self.flip_prob,
|
|
hsv_prob=self.hsv_prob),
|
|
degrees=self.degrees,
|
|
translate=self.translate,
|
|
mosaic_scale=self.mosaic_scale,
|
|
mixup_scale=self.mixup_scale,
|
|
shear=self.shear,
|
|
enable_mixup=self.enable_mixup,
|
|
mosaic_prob=self.mosaic_prob,
|
|
mixup_prob=self.mixup_prob,
|
|
)
|
|
if is_distributed:
|
|
batch_size = batch_size // dist.get_world_size()
|
|
sampler = InfiniteSampler(len(self.dataset), seed=self.seed if self.seed else 0)
|
|
batch_sampler = YoloBatchSampler(
|
|
sampler=sampler,
|
|
batch_size=batch_size,
|
|
drop_last=False,
|
|
mosaic=not no_aug,
|
|
)
|
|
dataloader_kwargs = {'num_workers': self.data_num_workers, 'pin_memory': True}
|
|
dataloader_kwargs['batch_sampler'] = batch_sampler
|
|
dataloader_kwargs['worker_init_fn'] = worker_init_reset_seed
|
|
train_loader = DataLoader(self.dataset, **dataloader_kwargs)
|
|
return train_loader
|
|
|
|
def random_resize(self, data_loader, epoch, rank, is_distributed):
|
|
tensor = torch.LongTensor(2).cuda()
|
|
if rank == 0:
|
|
size_factor = self.input_size[1] * 1.0 / self.input_size[0]
|
|
if not hasattr(self, 'random_size'):
|
|
min_size = int(self.input_size[0] / 32) - self.multiscale_range
|
|
max_size = int(self.input_size[0] / 32) + self.multiscale_range
|
|
self.random_size = (min_size, max_size)
|
|
size = random.randint(*self.random_size)
|
|
size = (int(32 * size), 32 * int(size * size_factor))
|
|
tensor[0] = size[0]
|
|
tensor[1] = size[1]
|
|
if is_distributed:
|
|
dist.barrier()
|
|
dist.broadcast(tensor, 0)
|
|
input_size = (tensor[0].item(), tensor[1].item())
|
|
return input_size
|
|
|
|
def preprocess(self, inputs, targets, tsize):
|
|
scale_y = tsize[0] / self.input_size[0]
|
|
scale_x = tsize[1] / self.input_size[1]
|
|
if scale_x != 1 or scale_y != 1:
|
|
inputs = nn.functional.interpolate(
|
|
inputs, size=tsize, mode='bilinear', align_corners=False
|
|
)
|
|
targets[..., 1::2] = targets[..., 1::2] * scale_x
|
|
targets[..., 2::2] = targets[..., 2::2] * scale_y
|
|
return inputs, targets
|
|
|
|
def get_optimizer(self, batch_size):
|
|
if 'optimizer' not in self.__dict__:
|
|
if self.warmup_epochs > 0:
|
|
lr = self.warmup_lr
|
|
else:
|
|
lr = self.basic_lr_per_img * batch_size
|
|
pg0, pg1, pg2 = [], [], []
|
|
for k, v in self.model.named_modules():
|
|
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
|
|
pg2.append(v.bias)
|
|
if isinstance(v, nn.BatchNorm2d) or 'bn' in k:
|
|
pg0.append(v.weight)
|
|
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
|
|
pg1.append(v.weight)
|
|
optimizer = torch.optim.SGD(
|
|
pg0, lr=lr, momentum=self.momentum, nesterov=True
|
|
)
|
|
optimizer.add_param_group({'params': pg1, 'weight_decay': self.weight_decay})
|
|
optimizer.add_param_group({'params': pg2})
|
|
self.optimizer = optimizer
|
|
return self.optimizer
|
|
|
|
def get_lr_scheduler(self, lr, iters_per_epoch):
|
|
from yolox.utils import LRScheduler
|
|
scheduler = LRScheduler(
|
|
self.scheduler,
|
|
lr,
|
|
iters_per_epoch,
|
|
self.max_epoch,
|
|
warmup_epochs=self.warmup_epochs,
|
|
warmup_lr_start=self.warmup_lr,
|
|
no_aug_epochs=self.no_aug_epochs,
|
|
min_lr_ratio=self.min_lr_ratio,
|
|
)
|
|
return scheduler
|
|
|
|
def get_eval_dataset(self, **kwargs):
|
|
from yolox.data import COCODataset, ValTransform
|
|
testdev = kwargs.get('testdev', False)
|
|
legacy = kwargs.get('legacy', False)
|
|
return COCODataset(
|
|
data_dir=self.data_dir,
|
|
json_file=self.val_ann if not testdev else self.test_ann,
|
|
name='' if not testdev else 'test2017',
|
|
img_size=self.test_size,
|
|
preproc=ValTransform(legacy=legacy),
|
|
)
|
|
|
|
def get_eval_loader(self, batch_size, is_distributed, **kwargs):
|
|
valdataset = self.get_eval_dataset(**kwargs)
|
|
if is_distributed:
|
|
batch_size = batch_size // dist.get_world_size()
|
|
sampler = torch.utils.data.distributed.DistributedSampler(
|
|
valdataset, shuffle=False
|
|
)
|
|
else:
|
|
sampler = torch.utils.data.SequentialSampler(valdataset)
|
|
dataloader_kwargs = {
|
|
'num_workers': self.data_num_workers,
|
|
'pin_memory': True,
|
|
'sampler': sampler,
|
|
}
|
|
dataloader_kwargs['batch_size'] = batch_size
|
|
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)
|
|
return val_loader
|
|
|
|
def get_evaluator(self, batch_size, is_distributed, testdev=False, legacy=False):
|
|
from yolox.evaluators import COCOEvaluator
|
|
return COCOEvaluator(
|
|
dataloader=self.get_eval_loader(batch_size, is_distributed,
|
|
testdev=testdev, legacy=legacy),
|
|
img_size=self.test_size,
|
|
confthre=self.test_conf,
|
|
nmsthre=self.nmsthre,
|
|
num_classes=self.num_classes,
|
|
testdev=testdev,
|
|
)
|
|
|
|
def get_trainer(self, args):
|
|
from yolox.core import Trainer
|
|
trainer = Trainer(self, args)
|
|
return trainer
|
|
|
|
def eval(self, model, evaluator, is_distributed, half=False, return_outputs=False):
|
|
return evaluator.evaluate(model, is_distributed, half, return_outputs=return_outputs)
|
|
|
|
def check_exp_value(exp):
|
|
h, w = exp.input_size
|
|
assert h % 32 == 0 and w % 32 == 0, 'input size must be multiples of 32'
|