first push

This commit is contained in:
Philipp
2025-11-28 12:50:27 +01:00
parent 471ea10341
commit 5220ffbe46
84 changed files with 1857 additions and 1527 deletions

View File

@@ -0,0 +1,152 @@
import os
import shutil
from models.training import Training
from models.TrainingProject import TrainingProject
def generate_yolox_exp(training_id):
"""Generate YOLOX exp.py file"""
# Fetch training row from DB
training = Training.query.get(training_id)
if not training:
training = Training.query.filter_by(project_details_id=training_id).first()
if not training:
raise Exception(f'Training not found for trainingId or project_details_id: {training_id}')
# If transfer_learning is 'coco', copy default exp.py
if training.transfer_learning == 'coco':
selected_model = training.selected_model.lower().replace('-', '_')
exp_source_path = f'/home/kitraining/Yolox/YOLOX-main/exps/default/{selected_model}.py'
if not os.path.exists(exp_source_path):
raise Exception(f'Default exp.py not found for model: {selected_model} at {exp_source_path}')
# Copy to project folder
project_details_id = training.project_details_id
project_folder = os.path.join(os.path.dirname(__file__), '..', f'project_23/{project_details_id}')
os.makedirs(project_folder, exist_ok=True)
exp_dest_path = os.path.join(project_folder, 'exp.py')
shutil.copyfile(exp_source_path, exp_dest_path)
return {'type': 'default', 'expPath': exp_dest_path}
# If transfer_learning is 'sketch', generate custom exp.py
if training.transfer_learning == 'sketch':
exp_content = generate_yolox_inference_exp(training_id)
return {'type': 'custom', 'expContent': exp_content}
raise Exception(f'Unknown transfer_learning type: {training.transfer_learning}')
def save_yolox_exp(training_id, out_path):
"""Save YOLOX exp.py to specified path"""
exp_result = generate_yolox_exp(training_id)
if exp_result['type'] == 'custom' and 'expContent' in exp_result:
with open(out_path, 'w') as f:
f.write(exp_result['expContent'])
return out_path
elif exp_result['type'] == 'default' and 'expPath' in exp_result:
# Optionally copy the file if outPath is different
if exp_result['expPath'] != out_path:
shutil.copyfile(exp_result['expPath'], out_path)
return out_path
else:
raise Exception('Unknown expResult type or missing content')
def generate_yolox_inference_exp(training_id, options=None):
"""Generate inference exp.py using DB values"""
if options is None:
options = {}
training = Training.query.get(training_id)
if not training:
training = Training.query.filter_by(project_details_id=training_id).first()
if not training:
raise Exception(f'Training not found for trainingId or project_details_id: {training_id}')
# Always use the training_id (project_details_id) for annotation file names
project_details_id = training.project_details_id
data_dir = options.get('data_dir', '/home/kitraining/To_Annotate/')
train_ann = options.get('train_ann', f'coco_project_{training_id}_train.json')
val_ann = options.get('val_ann', f'coco_project_{training_id}_valid.json')
test_ann = options.get('test_ann', f'coco_project_{training_id}_test.json')
# Get num_classes from TrainingProject.classes JSON
num_classes = 80
try:
training_project = TrainingProject.query.get(project_details_id)
if training_project and training_project.classes:
classes_arr = training_project.classes
if isinstance(classes_arr, str):
import json
classes_arr = json.loads(classes_arr)
if isinstance(classes_arr, list):
num_classes = len([c for c in classes_arr if c not in [None, '']])
elif isinstance(classes_arr, dict):
num_classes = len([k for k, v in classes_arr.items() if v not in [None, '']])
except Exception as e:
print(f'Could not determine num_classes from TrainingProject.classes: {e}')
depth = options.get('depth', training.depth or 1.00)
width = options.get('width', training.width or 1.00)
input_size = options.get('input_size', training.input_size or [640, 640])
mosaic_scale = options.get('mosaic_scale', training.mosaic_scale or [0.1, 2])
random_size = options.get('random_size', [10, 20])
test_size = options.get('test_size', training.test_size or [640, 640])
exp_name = options.get('exp_name', 'inference_exp')
enable_mixup = options.get('enable_mixup', False)
# Build exp content
exp_content = f'''#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import os
from yolox.exp import Exp as MyExp
class Exp(MyExp):
def __init__(self):
super(Exp, self).__init__()
self.data_dir = "{data_dir}"
self.train_ann = "{train_ann}"
self.val_ann = "{val_ann}"
self.test_ann = "coco_project_{training_id}_test.json"
self.num_classes = {num_classes}
'''
# Set pretrained_ckpt if transfer_learning is 'coco'
if training.transfer_learning and isinstance(training.transfer_learning, str) and training.transfer_learning.lower() == 'coco':
yolox_base_dir = '/home/kitraining/Yolox/YOLOX-main'
selected_model = training.selected_model.replace('.pth', '') if training.selected_model else ''
if selected_model:
exp_content += f" self.pretrained_ckpt = r'{yolox_base_dir}/pretrained/{selected_model}.pth'\n"
# Format arrays
input_size_str = ', '.join(map(str, input_size)) if isinstance(input_size, list) else str(input_size)
mosaic_scale_str = ', '.join(map(str, mosaic_scale)) if isinstance(mosaic_scale, list) else str(mosaic_scale)
random_size_str = ', '.join(map(str, random_size)) if isinstance(random_size, list) else str(random_size)
test_size_str = ', '.join(map(str, test_size)) if isinstance(test_size, list) else str(test_size)
exp_content += f''' self.depth = {depth}
self.width = {width}
self.input_size = ({input_size_str})
self.mosaic_scale = ({mosaic_scale_str})
self.random_size = ({random_size_str})
self.test_size = ({test_size_str})
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
self.enable_mixup = {str(enable_mixup)}
'''
return exp_content
def save_yolox_inference_exp(training_id, out_path, options=None):
"""Save inference exp.py to custom path"""
exp_content = generate_yolox_inference_exp(training_id, options)
with open(out_path, 'w') as f:
f.write(exp_content)
return out_path