initial push

This commit is contained in:
Philipp
2025-11-28 09:35:02 +01:00
commit 471ea10341
97 changed files with 7424 additions and 0 deletions

View File

@@ -0,0 +1,135 @@
const fs = require('fs');
const path = require('path');
const Training = require('../models/training.js');
const TrainingProject = require('../models/TrainingProject.js');
// Remove Python comments and legacy code
const exp_names = [
'YOLOX-s',
'YOLOX-m',
'YOLOX-l',
'YOLOX-x',
'YOLOX-Darknet53', //todo
'YOLOX-Nano',
'YOLOX-Tiny'
]
//TODO: Clean up generation of exp_names.py and remove second exp creation!!!
// Refactored: Accept trainingId, fetch info from DB
async function generateYoloxExp(trainingId) {
// Fetch training row from DB by project_details_id if not found by PK
let training = await Training.findByPk(trainingId);
if (!training) {
training = await Training.findOne({ where: { project_details_id: trainingId } });
}
if (!training) throw new Error('Training not found for trainingId or project_details_id: ' + trainingId);
// If transfer_learning is 'coco', just return the path to the default exp.py
if (training.transfer_learning === 'coco') {
const selectedModel = training.selected_model.toLowerCase().replace('-', '_');
const expSourcePath = `/home/kitraining/Yolox/YOLOX-main/exps/default/${selectedModel}.py`;
if (!fs.existsSync(expSourcePath)) {
throw new Error(`Default exp.py not found for model: ${selectedModel} at ${expSourcePath}`);
}
// Copy to project folder (e.g., /home/kitraining/coco_tool/backend/project_XX/YY/exp.py)
const projectDetailsId = training.project_details_id;
const projectFolder = path.resolve(__dirname, `../project_23/${projectDetailsId}`);
if (!fs.existsSync(projectFolder)) {
fs.mkdirSync(projectFolder, { recursive: true });
}
const expDestPath = path.join(projectFolder, 'exp.py');
fs.copyFileSync(expSourcePath, expDestPath);
return { type: 'default', expPath: expDestPath };
}
// If transfer_learning is 'sketch', generate a custom exp.py as before
if (training.transfer_learning === 'sketch') {
// ...existing custom exp.py generation logic here (copy from previous implementation)...
// For brevity, you can call generateYoloxInferenceExp or similar here, or inline the logic.
// Example:
const expContent = await generateYoloxInferenceExp(trainingId);
return { type: 'custom', expContent };
}
throw new Error('Unknown transfer_learning type: ' + training.transfer_learning);
}
async function saveYoloxExp(trainingId, outPath) {
const expResult = await generateYoloxExp(trainingId);
if (expResult.type === 'custom' && expResult.expContent) {
fs.writeFileSync(outPath, expResult.expContent);
return outPath;
} else if (expResult.type === 'default' && expResult.expPath) {
// Optionally copy the file if outPath is different
if (expResult.expPath !== outPath) {
fs.copyFileSync(expResult.expPath, outPath);
}
return outPath;
} else {
throw new Error('Unknown expResult type or missing content');
}
}
// Generate a second exp.py for inference, using the provided template and DB values
async function generateYoloxInferenceExp(trainingId, options = {}) {
let training = await Training.findByPk(trainingId);
if (!training) {
training = await Training.findOne({ where: { project_details_id: trainingId } });
}
if (!training) throw new Error('Training not found for trainingId or project_details_id: ' + trainingId);
// Always use the trainingId (project_details_id) for annotation file names
const projectDetailsId = training.project_details_id;
const dataDir = options.data_dir || '/home/kitraining/To_Annotate/';
const trainAnn = options.train_ann || `coco_project_${trainingId}_train.json`;
const valAnn = options.val_ann || `coco_project_${trainingId}_valid.json`;
const testAnn = options.test_ann || `coco_project_${trainingId}_test.json`;
// Get num_classes from TrainingProject.classes JSON
let numClasses = 80;
try {
const trainingProject = await TrainingProject.findByPk(projectDetailsId);
if (trainingProject && trainingProject.classes) {
let classesArr = trainingProject.classes;
if (typeof classesArr === 'string') {
classesArr = JSON.parse(classesArr);
}
if (Array.isArray(classesArr)) {
numClasses = classesArr.filter(c => c !== null && c !== undefined && c !== '').length;
} else if (typeof classesArr === 'object' && classesArr !== null) {
numClasses = Object.keys(classesArr).filter(k => classesArr[k] !== null && classesArr[k] !== undefined && classesArr[k] !== '').length;
}
}
} catch (e) {
console.warn('Could not determine num_classes from TrainingProject.classes:', e);
}
const depth = options.depth || training.depth || 1.00;
const width = options.width || training.width || 1.00;
const inputSize = options.input_size || training.input_size || [640, 640];
const mosaicScale = options.mosaic_scale || training.mosaic_scale || [0.1, 2];
const randomSize = options.random_size || training.random_size || [10, 20];
const testSize = options.test_size || training.test_size || [640, 640];
const expName = options.exp_name || 'inference_exp';
const enableMixup = options.enable_mixup !== undefined ? options.enable_mixup : false;
let expContent = '';
expContent += `#!/usr/bin/env python3\n# -*- coding:utf-8 -*-\n# Copyright (c) Megvii, Inc. and its affiliates.\n\nimport os\n\nfrom yolox.exp import Exp as MyExp\n\n\nclass Exp(MyExp):\n def __init__(self):\n super(Exp, self).__init__()\n self.data_dir = "${dataDir}"\n self.train_ann = "${trainAnn}"\n self.val_ann = "${valAnn}"\n self.test_ann = "coco_project_${trainingId}_test.json"\n self.num_classes = ${numClasses}\n`;
// Set pretrained_ckpt if transfer_learning is 'coco'
if (training.transfer_learning && typeof training.transfer_learning === 'string' && training.transfer_learning.toLowerCase() === 'coco') {
const yoloxBaseDir = '/home/kitraining/Yolox/YOLOX-main';
const selectedModel = training.selected_model ? training.selected_model.replace(/\.pth$/i, '') : '';
if (selectedModel) {
expContent += ` self.pretrained_ckpt = r'${yoloxBaseDir}/pretrained/${selectedModel}.pth'\n`;
}
}
expContent += ` self.depth = ${depth}\n self.width = ${width}\n self.input_size = (${Array.isArray(inputSize) ? inputSize.join(', ') : inputSize})\n self.mosaic_scale = (${Array.isArray(mosaicScale) ? mosaicScale.join(', ') : mosaicScale})\n self.random_size = (${Array.isArray(randomSize) ? randomSize.join(', ') : randomSize})\n self.test_size = (${Array.isArray(testSize) ? testSize.join(', ') : testSize})\n self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]\n self.enable_mixup = ${enableMixup ? 'True' : 'False'}\n`;
return expContent;
}
// Save inference exp.py to a custom path
async function saveYoloxInferenceExp(trainingId, outPath, options = {}) {
const expContent = await generateYoloxInferenceExp(trainingId, options);
fs.writeFileSync(outPath, expContent);
return outPath;
}
module.exports = { generateYoloxExp, saveYoloxExp, generateYoloxInferenceExp, saveYoloxInferenceExp };