initial push

This commit is contained in:
Philipp
2025-11-28 09:35:02 +01:00
commit 471ea10341
97 changed files with 7424 additions and 0 deletions

View File

@@ -0,0 +1,292 @@
import os
import random
import torch
import torch.distributed as dist
import torch.nn as nn
# Dynamically import BaseExp from fixed path
import importlib.util
import sys
base_exp_path = '/home/kitraining/Yolox/YOLOX-main/yolox/exp/base_exp.py'
spec = importlib.util.spec_from_file_location('base_exp', base_exp_path)
base_exp = importlib.util.module_from_spec(spec)
sys.modules['base_exp'] = base_exp
spec.loader.exec_module(base_exp)
BaseExp = base_exp.BaseExp
__all__ = ["Exp", "check_exp_value"]
class Exp(BaseExp):
def __init__(self):
super().__init__()
self.seed = None
self.data_dir = r'/home/kitraining/To_Annotate/'
self.train_ann = 'coco_project_38_train.json'
self.val_ann = 'coco_project_38_valid.json'
self.test_ann = 'coco_project_38_test.json'
self.num_classes = 80
self.pretrained_ckpt = r'/home/kitraining/Yolox/YOLOX-main/pretrained/YOLOX-s.pth'
self.depth = 1.00
self.width = 1.00
self.act = 'silu'
self.data_num_workers = 4
self.input_size = (640, 640)
self.multiscale_range = 5
self.mosaic_prob = 1.0
self.mixup_prob = 1.0
self.hsv_prob = 1.0
self.flip_prob = 0.5
self.degrees = (10.0, 10.0)
self.translate = (0.1, 0.1)
self.mosaic_scale = (0.1, 2)
self.enable_mixup = True
self.mixup_scale = (0.5, 1.5)
self.shear = (2.0, 2.0)
self.warmup_epochs = 5
self.max_epoch = 300
self.warmup_lr = 0
self.min_lr_ratio = 0.05
self.basic_lr_per_img = 0.01 / 64.0
self.scheduler = 'yoloxwarmcos'
self.no_aug_epochs = 15
self.ema = True
self.weight_decay = 5e-4
self.momentum = 0.9
self.print_interval = 10
self.eval_interval = 10
self.save_history_ckpt = True
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split('.')[0]
self.test_size = (640, 640)
self.test_conf = 0.01
self.nmsthre = 0.65
self.exp_name = 'lalalalal'
self.max_epoch = 300
self.depth = 1
self.width = 1
self.activation = 'silu'
self.warmup_epochs = 5
self.warmup_lr = 0
self.scheduler = 'yoloxwarmcos'
self.no_aug_epochs = 15
self.min_lr_ratio = 0.05
self.ema = True
self.weight_decay = 0.0005
self.momentum = 0.9
self.input_size = (640, 640)
self.print_interval = 10
self.eval_interval = 10
self.save_history_ckpt = True
self.test_size = (640, 640)
self.test_conf = 0.01
self.multiscale_range = 5
self.enable_mixup = True
self.mosaic_prob = 1
self.mixup_prob = 1
self.hsv_prob = 1
self.flip_prob = 0.5
self.degrees = (10, 10)
self.mosaic_scale = (0.1, 2)
self.mixup_scale = (0.5, 1.5)
self.translate = (0.1, 0.1)
self.shear = (2, 2)
self.project_details_id = 38
self.selected_model = 'YOLOX-s'
self.transfer_learning = 'coco'
def get_model(self):
from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead
def init_yolo(M):
for m in M.modules():
if isinstance(m, nn.BatchNorm2d):
m.eps = 1e-3
m.momentum = 0.03
if getattr(self, 'model', None) is None:
in_channels = [256, 512, 1024]
backbone = YOLOPAFPN(self.depth, self.width, in_channels=in_channels, act=self.act)
head = YOLOXHead(self.num_classes, self.width, in_channels=in_channels, act=self.act)
self.model = YOLOX(backbone, head)
self.model.apply(init_yolo)
self.model.head.initialize_biases(1e-2)
self.model.train()
return self.model
def get_dataset(self, cache=False, cache_type='ram'):
from yolox.data import COCODataset, TrainTransform
return COCODataset(
data_dir=self.data_dir,
json_file=self.train_ann,
img_size=self.input_size,
preproc=TrainTransform(
max_labels=50,
flip_prob=self.flip_prob,
hsv_prob=self.hsv_prob
),
cache=cache,
cache_type=cache_type,
)
def get_data_loader(self, batch_size, is_distributed, no_aug=False, cache_img=None):
from yolox.data import (
TrainTransform,
YoloBatchSampler,
DataLoader,
InfiniteSampler,
MosaicDetection,
worker_init_reset_seed,
)
from yolox.utils import wait_for_the_master
if self.dataset is None:
with wait_for_the_master():
assert cache_img is None, 'cache_img must be None if you did not create self.dataset before launch'
self.dataset = self.get_dataset(cache=False, cache_type=cache_img)
self.dataset = MosaicDetection(
dataset=self.dataset,
mosaic=not no_aug,
img_size=self.input_size,
preproc=TrainTransform(
max_labels=120,
flip_prob=self.flip_prob,
hsv_prob=self.hsv_prob),
degrees=self.degrees,
translate=self.translate,
mosaic_scale=self.mosaic_scale,
mixup_scale=self.mixup_scale,
shear=self.shear,
enable_mixup=self.enable_mixup,
mosaic_prob=self.mosaic_prob,
mixup_prob=self.mixup_prob,
)
if is_distributed:
batch_size = batch_size // dist.get_world_size()
sampler = InfiniteSampler(len(self.dataset), seed=self.seed if self.seed else 0)
batch_sampler = YoloBatchSampler(
sampler=sampler,
batch_size=batch_size,
drop_last=False,
mosaic=not no_aug,
)
dataloader_kwargs = {'num_workers': self.data_num_workers, 'pin_memory': True}
dataloader_kwargs['batch_sampler'] = batch_sampler
dataloader_kwargs['worker_init_fn'] = worker_init_reset_seed
train_loader = DataLoader(self.dataset, **dataloader_kwargs)
return train_loader
def random_resize(self, data_loader, epoch, rank, is_distributed):
tensor = torch.LongTensor(2).cuda()
if rank == 0:
size_factor = self.input_size[1] * 1.0 / self.input_size[0]
if not hasattr(self, 'random_size'):
min_size = int(self.input_size[0] / 32) - self.multiscale_range
max_size = int(self.input_size[0] / 32) + self.multiscale_range
self.random_size = (min_size, max_size)
size = random.randint(*self.random_size)
size = (int(32 * size), 32 * int(size * size_factor))
tensor[0] = size[0]
tensor[1] = size[1]
if is_distributed:
dist.barrier()
dist.broadcast(tensor, 0)
input_size = (tensor[0].item(), tensor[1].item())
return input_size
def preprocess(self, inputs, targets, tsize):
scale_y = tsize[0] / self.input_size[0]
scale_x = tsize[1] / self.input_size[1]
if scale_x != 1 or scale_y != 1:
inputs = nn.functional.interpolate(
inputs, size=tsize, mode='bilinear', align_corners=False
)
targets[..., 1::2] = targets[..., 1::2] * scale_x
targets[..., 2::2] = targets[..., 2::2] * scale_y
return inputs, targets
def get_optimizer(self, batch_size):
if 'optimizer' not in self.__dict__:
if self.warmup_epochs > 0:
lr = self.warmup_lr
else:
lr = self.basic_lr_per_img * batch_size
pg0, pg1, pg2 = [], [], []
for k, v in self.model.named_modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias)
if isinstance(v, nn.BatchNorm2d) or 'bn' in k:
pg0.append(v.weight)
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight)
optimizer = torch.optim.SGD(
pg0, lr=lr, momentum=self.momentum, nesterov=True
)
optimizer.add_param_group({'params': pg1, 'weight_decay': self.weight_decay})
optimizer.add_param_group({'params': pg2})
self.optimizer = optimizer
return self.optimizer
def get_lr_scheduler(self, lr, iters_per_epoch):
from yolox.utils import LRScheduler
scheduler = LRScheduler(
self.scheduler,
lr,
iters_per_epoch,
self.max_epoch,
warmup_epochs=self.warmup_epochs,
warmup_lr_start=self.warmup_lr,
no_aug_epochs=self.no_aug_epochs,
min_lr_ratio=self.min_lr_ratio,
)
return scheduler
def get_eval_dataset(self, **kwargs):
from yolox.data import COCODataset, ValTransform
testdev = kwargs.get('testdev', False)
legacy = kwargs.get('legacy', False)
return COCODataset(
data_dir=self.data_dir,
json_file=self.val_ann if not testdev else self.test_ann,
name='' if not testdev else 'test2017',
img_size=self.test_size,
preproc=ValTransform(legacy=legacy),
)
def get_eval_loader(self, batch_size, is_distributed, **kwargs):
valdataset = self.get_eval_dataset(**kwargs)
if is_distributed:
batch_size = batch_size // dist.get_world_size()
sampler = torch.utils.data.distributed.DistributedSampler(
valdataset, shuffle=False
)
else:
sampler = torch.utils.data.SequentialSampler(valdataset)
dataloader_kwargs = {
'num_workers': self.data_num_workers,
'pin_memory': True,
'sampler': sampler,
}
dataloader_kwargs['batch_size'] = batch_size
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)
return val_loader
def get_evaluator(self, batch_size, is_distributed, testdev=False, legacy=False):
from yolox.evaluators import COCOEvaluator
return COCOEvaluator(
dataloader=self.get_eval_loader(batch_size, is_distributed,
testdev=testdev, legacy=legacy),
img_size=self.test_size,
confthre=self.test_conf,
nmsthre=self.nmsthre,
num_classes=self.num_classes,
testdev=testdev,
)
def get_trainer(self, args):
from yolox.core import Trainer
trainer = Trainer(self, args)
return trainer
def eval(self, model, evaluator, is_distributed, half=False, return_outputs=False):
return evaluator.evaluate(model, is_distributed, half, return_outputs=return_outputs)
def check_exp_value(exp):
h, w = exp.input_size
assert h % 32 == 0 and w % 32 == 0, 'input size must be multiples of 32'